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Disclaimer!

 This tutorial is iIncomplete!

* There are too many papers to cover in one tutorial on deep learning for
causal inference.

« We will highlight some of the main ideas. Omission not reflection of a
paper’s importance, but our ignorance!

* This tutorial is brief!
* We may be imprecise at times, and not fully rigorous for brevity.

 This tutorial is biased!
« We will focus on SCM view even though a paper is using PO.



What this tutorial is NOT

We do not cover the following:
» Causal discovery. We will assume graph is given.

« Causal analysis of deep networks. We will focus on the other way
around: how deep learning can be leveraged for causal inference.



What this tutorial is

* Three main ideas repeatedly used by several papers.
« Cover and interpret key papers that represent these main ideas.

« Explore their strengths and weaknesses (e.g., assumptions).
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Causal Inference
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Modeling Probabilistic Causation

X :Percentage of population w/ access to clean water
Y : Child mortality

X Y
22 165
97 15
85 33
100 3
S1 154

http://data.un.org



Modeling Probabilistic Causation

X Y
X Percentage of population w/ access to clean water > e
Y : Child mortality 97 15

100 3

S 154

http://data.un.org
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Modeling Probabilistic Causation

X :Percentage of population w/ access to clean water 2X2 125
Y : Child mortality
97 15
85 33
51 154

Magic wand to

http://data.un.org
intervene/do: \

|l —| w] <<
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Modeling Probabilistic Causation

X Is said to cause Y
If
intervening on X
changes
the distribution of Y



Causal Modeling

Causal Graph

Vertices: Random variables
Edges : Causal relations

X; = fi(Pay, E;)
Pa;: Set of parents of X;in the causal graph
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Causal Modeling
Soft

Intervene on X4

Vertices: Random variables
Edges : Causal relations

X; = fi(Pay, E;)
Pa;: Set of parents of X;in the causal graph
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Inferring Causation

Does going to college have any causal effect on income at 307

Went to
College

Income at 30
> 50k
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0
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Inferring Causation
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Inferring Causation

Does going to college have any causal effect on income at 307

Went to Income at 30 Parents’
College > 50k Income
0 0 0
0 1 ]

0 0 0
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Inferring Causation

Does going to college have any causal effect on income at 307

Went to Income at 30 Parents’
College > 50k Income
0 0 0
0 1 ]

0 0 0

]

Conduct a ]

. e
Randomized ¢

Experiment
went to College Income at 39




Inferring Causation
Conduct intervention (RCT)

* Force half the people to go * Force other half to NOT go
Went to Income at 30 Went to Income at 30
College > 50k College > 50k
1 ] 0 0
1 ] 0 1
1 0 0 0

« Compare income of both ( Parents’ Income
populations "gf

S

X SN /)

Wet to College X Income at 39




From Observational Data

To adjust or not to adjust?

/SEX\
EDU —» INCOME —» DASH

~_

DASH: Dietary Approach to Stop Hypertension
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From Observational Data

To adjust or not to adjust?

l,«---> confounder VA
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DASH: Dietary Approach to Stop Hypertension



From Observational Data

To adjust or not to adjust?

-===-» confounder

SEX

N

EDU —» INCOME —» DASH

DASH: Dietary Approach to Stop Hypertension

20
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Y(0),Y(1) IL X|Z  Ignorability
E[Y(1) - Y(0)] = EE[Y|X =1, 2] — E[E[[Y]X = 0, 2]

xzy B *x
o .. ..

. r®pRegress Y on Z W Average w/ Z *
(unconditional)

' twpRegressYonZ ® Averagew/Z |
B (unconditional)




Causal Inference

 |tis possible to estimate interventional distribution from
observational data and the causal graph.

 Do-calculus rules are sufficient to convert an identifiable interventional
qguery into a function of the observed distribution, if it is possible.

* Sound and complete IDentification algorithms are given by
(Shpitser & Pearl) and (Tian & Pearl).



Causal Graphs Imply Dependency Models

Induced Conditional
Independences (Cl):

X1 1 X5

X1 ) Xo | Xy
X1 U X5|X5
X, AL X | X2, Xs




Causal Graphs Imply Dependency Models

Induced Conditional
Independences (Cl):

X1 1 X5

X1 U Xo | Xy
X1 X3|X5
X, 1L X5 | Xy, Xs

Causal DAG is a Bayes Net for the induced distribution!

29



d-separation

Cavusal Graph Induced CI

O—O—-0E@—~0© vuLvp




d-separation

Cavusal Graph Induced CI
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d-separation

Cavusal Graph

Induced CI
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d-separation

Cavusal Graph

Induced CI

U 1.V |0
UL V|Y
U LVI|Y,Z

U Y VI|T



Do-Calculus

Example 1

 Inferring about interventions from observational data.

Conditioning on X changes posterior of U
P —@‘ ~ Intervention does not
/ N\

/ \

0—0—o0

p(z|do(z))

When are the two identical?
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Do-Calculus

Example 1

 Inferring about interventions from observational data.

Conditioning on X changes posterior of U

, —@- ~ Intervention does not
/7 N\

/ \ When are the two identical?

0—0—o0

p(z|do(z))

If there is no active backdoor path
from intervened variable
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Do-Calculus

Example 1

 Inferring about interventions from observational data.

Conditioning on X changes posterior of U

-’ —Q‘ ~ Intervention does not
/7 \
/ \ When are the two identical?
é—be—bé If there is no active backdoor path

from intervened variable

p(z|do(z)) (X 1L Z)ax
Y
p(z|do(x)) = p(z|z)

36



Do-Calculus

Example 2

 Inferring about interventions from observational data.

When does an intervention have no effect?
7 "@‘ ~
V4 N\

If the only connections are through backdoor

/ \ paths.

0—0—o0

p(z|do(2))
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Do-Calculus

Example 2

 Inferring about interventions from observational data.

When does an intervention have no effect?
7 "@‘ ~
V4 N\

If the only connections are through backdoor
paths.

/ \
(X 1L Z)¢,

0—0—o0 @

p(z|do(z)) p(z|do(2)) = p(z)

38



Do-Calculus

Example 3

O
y 4 N\

/ \

0—0—o0

p(yldo(z))




Do-Calculus

Example 3

p(y|do(z)) # p(y)
- -0- ~. p(yldo(2)) # p(yl2)

/ \

0—0—o0

p(yldo(z))

Block the path to Y by conditioning on X!
How?




Do-Calculus

Example 3
p(y|do(z)) # p(y)
O~ p(yldo(2)) # p(yl2)
/ \ Block the path to Y by conditioning on X!
How?

0—0—o0

p(yldo(z)) = >_, p(yl|z, do(z))p(x|do(2))




Do-Calculus

Example 3

p(y|do(z)) # p(y)
/—Q-\ p(yldo(z)) # p(ylz)

/ \

0—0—o0

p(y|do(z)) = >, p(y|z, do(2))p(z|do(2))
p(y|z,do(z)) = p(y|z, 2) p(z|do(z)) = p(z)

Block the path to Y by conditioning on X!
How?




Do-Calculus

Example 3

p(y|do(z)) # p(y)
/—@-\ p(yldo(z)) # p(ylz)

/ \

0—0—o0

p(yldo(2)) = >, p(y|z,do(2))p(x|do(2))
= p(y|z, 2) p(z|do(2)) = p(x)

Block the path to Y by conditioning on X!
How?




Do-Calculus

Example 3

p(y|do(z)) # p(y)
- -0- ~. p(yldo(2)) # p(yl2)

/ \

0—0—o0

p(y|do(z)) » P(y|z, do(2))p(z|do(2))
p(y|z,do(z)) = p(y|z, 2) p(z|do(z)) = p(z)

= p(y dO(Z)) — T p(ylﬂj, Z)p(£l7) ygili(sd?g:e:djus’rmeni

Block the path to Y by conditioning on X!
How?

||
I M

(]



Rules of Do-Calculus [Pearl’95]

Rule 1 (insertion/deletion of observations):

pr(y|X, z, wy=pr(y|X, w) if (YILLZ|X, W)g,.

Rule 2 (action/observation exchange):
pr(y|X, Z, w)=pr(y|X, z, w) if (YILZ|X, W)g,,.
Rule 3 (insertion/deletion of actions):

pr(y|X, Z,w)=pr(y|X,w) if (YILLZ|X, W), .,

45



From Observational Data
To adjust or not to adjust?
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From Observational Data
To adjust or not to adjust?

> oz, ylr,w)p(r)
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From Observational Data
To adjust or not to adjust?
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From Observational Data

To adjust or not to adjust?
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From Observational Data
To adjust or not to adjust?
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P=(Y)

Zx’ p(y7 23‘33,7 21, Z2)p(l’/, Z2)
Z;U/ p(253‘33’, 21, Zg)p(ZC/, ZQ)

pm(2172272’3>y) = p(zg\zg)p(zﬂx,zg)

p(22)

Z Zwp(w1|7“’7w27w37w4)p(7“’|w3,w4)

:U _—
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No Estimation w/out Identification!



Different Frameworks

Pearl’s SCMs

1. Assume a set of (unknown)
structural equations
interpreted as assignment
operators.

2. Define intervention on
these equations.

3. Understand the formula that

transforms observational
distribution to interventional
distribution (estimand).

Rubin-Neyman PO

1.

Start by defining
counterfactual variables.

Assume (conditional)
independence between
counterfactual variables.

Develop estimators that
give causal effect under
these independence
assumptions.
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Neural Networks



Muffin vs. Chihuahua

Learn a mapping that outputs class labels.

Given the image, decide if
0 - Muffin

1 - Chihuahua @.%ﬂ-am&
&:.wq




Multi Layer Perpectron for Image Classification

A Sample arChIteCture class MNISTClassifier(nn.Module):

def __init__ (self):
super().__init__()
# Input: 28x28 = 784
# Hidden layers: 128, 64
# Output: 10 classes
self.flatten = nn.Flatten()

self.fcl = nn.Linear(784, 128)
self.fc2 = nn.Linear (128, 64)
self.fc3 = nn.Linear(64, 10)

# He initialization for RelLU
nn.init.kaiming_normal_(self.fcl.weight)
nn.init.kaiming_normal_(self.fc2.weight)

10 x 1 nn.init.kaiming_normal_(self.fc3.weight)
64 x 1
def forward(self, x):
28 x 28 x = self.flatten(x)

128 x 1 x = torch.relu(self.fcl(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return Xx

784 x 1



Training Steps AlphaFold Experiment
r.m.s.d.qs = 0.8 A; TM-score = 0.93

AlphaGo, 2015 AlphaZero, 2017 AlphaFold, 2020
Only self-play Uses A ,
Deep RL + Search No access to ses Attention
Self-play opening books, endgames.

ChatGPT, 2022 = ‘®
ORA, 2024

] = | Transformers S
DALL-E, 20?1 , Supervised Learning, RLHF
Transformers, Diffusion Search

Diffusion



Neural Network Basics

Deep Neural Networks
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« Efficiently computable

« Easy to train
« Differentiable




Neural Net Architectures Fit Complex
Functions to Data aka Curve-fitting

fc 3 fc 4
Fully-Connected Fully-Connected
Neural Network Neural Network
Conv_1 Conv_2 RelU activation
Convolution Convolution | /—M
(5 X 5) kernel Max-Pooling (5x5) kernel  pay-pooling (with ' 5% " [
valid padding 2x2) valid padding (2x2) Q\ “‘. .0. ' /]
dropout) 0 SRS (]
&“0’0’4" '

(]

ff&?’z

i

INPUT nl channels nl channels n2 channels n2 channels E |/
(28x28x1) (24 x 24 x n1) (12x12xnl) (8 x8xn2) (4x4xn2) ' —

n3 units

Convolutional Encoder-Decoder

Output

Pooling Indices

RGB Image I Conv + Batch Normalisation + RelU Segmentation
B Pooling I Upsampling Softmax




Modern NNs Can Learn to Sample from
Complex Data Distributions

GAN: Adversarial / . Discriminator 7 Generator 1
. X X X
training D(x) G(z)

VAE: maximize x |\ EnCOder Z DeCOder N x/
variational lower bound q¢(z|x) po(x|z)
Flow-based models: x |—» Flow . oz . Inll:)rse o x!
Invertible transform of f(x) f(2)

distributions
Diffusion models:. X0 Xy - Xo - 7

Gradually add Gaussian - - *-- Diataiaiiale ity
noise and then reverse




What can we wish from NNs for
causality?

* Fit really complicated functions.

» Retrieve semantically
meaningful latent features.

* Fit really complicated
distributions.




A Taxonomy of Deep Learning
Approaches for Causal Inference

Function Modeling Feature Extraction Generative Modeling




Causal Inference with

Deep Learning and Generative Models
Outline

« A Taxonomy of Deep Learning Approaches for Causal Inference
* Function Modeling (a.k.a. Curve Fitting)



A Taxonomy of Deep Learning
Approaches for Causal Inference

Function Modeling Feature Extraction Generative Modeling

f:R" = 10,1]



Function Modeling (a.k.a. Curve Fitting)

* We can talk about many functions that help evaluate causal
effect.

 \We can use neural networks to model them.

 The differentiable loss allows us to “nudge” the learnt function to
have certain properties that we desire.



Average Treatment Effect

 Goal is to estimate
X

ATE = E[Y|do(T = 1)] — E[Y|do(T = 0)]
. . / \

T > Y
Causal Graph




Direct Modeling of Counterfactuals in PO
Learning Representations for Counterfactual Inference

Johansson, Shalit, Sontag

* Yy(X) vs. Y4(x) are counterfactual variables.
X

N

T > Y
Causal Graph




Direct Modeling of Counterfactuals in PO
Learning Representations for Counterfactual Inference

Johansson, Shalit, Sontag

* Yy(X) vs. Y4(x) are counterfactual variables.

X
* Y, is independent from T given X. [ignorabilitV \
T Y

Causal Graph

®
o e

SWIG




Direct Modeling of Counterfactuals in PO
Learning Representations for Counterfactual Inference

Johansson, Shalit, Sontag

* Yy(X) vs. Y4(x) are counterfactual variables.

X
* Y, is independent from T given X. / \
Y

» Adjustment with X is sufficient. g Causal Graph

ATE = E[Y|do(T = 1)] — E[Y|do(T

—E[E[Y|X,T =1]] - E[E Y\X T_O / \

SWIG




Direct Modeling of Counterfactuals in PO
Learning Representations for Counterfactual Inference

Johansson, Shalit, Sontag

ATE = E[E[Y|X,T = 1]] — E[E[Y|X, T = 0]

This may be biased if overlap is not strong / \

Causal Graph

High-dimensional confounder may be hard to

condition on. / \

Idea Learn a representation of X that
n be used for adjustment.

SWIG



Function Modeling Perspective for
Causal Inference

Naive vs. Adjusted Estimates
Naive = 6.10, Adjusted = 1.93

=== True effect = 2

Covariate x
o =
[(0]0)601(60)10))) (0 (@0 010)]6]
CRATIDXIXIOXD © O O O
o N SN
Outcome y
Estimated treatment effect
w N
1 1

([ ]
|
o

0.0 0.2 0.4 0.6 0.8 1.0 Naive Adjusted
Treatment t



Function Modeling Perspective for
Causal Inference

Covariate x

A
a

Factual (observed)
A Counterfactual (true)

F'YYVYY

\AAA4

\ 4

D-IDEESRERSSISESIINISTIEF 0™ © O O O

0.2

0.4
Treatment t

0.6

0.8

7.5
5.0
25 o
3
T
>
()
€
0.0 8
9
3
o)
-2.5
-5.0
-7.5

Estimated treatment errect

Naive vs. Adjusted Estimates
Naive = 6.10, Adjusted = 1.93

Naive

=== True effect = 2

Adjusted



Function Modeling Perspective for
Causal Inference

Factual vs. Counterfactual Outcomes in the (t, x) Plane

o) [ ] @ Factual (observed) e}
o L8 A Counterfactual (true) e)
o A o 73
- 2 -
2 o) A o
-6
a
o - 5.0
@,
()
1 4 1
x 15} > . 25 g
2 2 2 9 [
< 0 5 £, £
S % g 0.0 S
S 0o ° 3
-1 ) 1 -25
-4 -5.0
-2 1 2
® —6 ) A -75
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0

Treatment t Treatment t

yiF - h(Xi, tl) inF = h(Xi’ 1-ti)

If we can model function h, we can obtain counterfactual pairs and use it for ITE, ATE.



Function Modeling Perspective for
Causal Inference

Strongly Confounded Assignment

(Outcome shading) Factual vs. Counterfactual Outcomes in the (t, x) Plane
o) Factual (observed) e}
? o L5 Counterfactual (true) 0]
(o] (@)
2 -
2 17 [ o) o
- 6
1 1 4 1
: (0] 5 ;“ x
) (0]
© E =
s o g 1o
: 5 8
O 0 O
-1 _5 -1
Ydn =
-2 4 . -2
° -6 ) A
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 08 10

Treatment t Treatment t

yi© = h(x;, t) yio" = hix;, 1-t)

r7.5

-5.0

2.5

0.0

—-2.5

-5.0

-7.5

Outcome value



Direct Modeling of Counterfactuals in PO
Learning Representations for Counterfactual Inference

Johansson, Shalit, Sontag

* We need to fill in missing values “smartly”.

* Distill confounder so it is balanced across T=0, T=1.
 Easier to learn a function h on a balanced representation.

» Use deep learning to obtain a representation with these objectives.

« But why would this even work? Or when should it work?



Adjustment with Representation

 Learnt representation is a child of

confounder X in the true causal graph.
X

* W is not a valid adjustment set! / vlv \

T Y

* Maybe under some assumptions?



A Good Representation

« Balanced: p(W|T=0) = p(W|T=1)

W [T A
l
1%
 Informative: p(Y|W, X=x) = p(Y|W, X=x') T Y
Y || X|W

This removes trivial representations, such as a constant.

Are these enough for W to be a valid adjustment?



Recall the adjustment condition

Y, I T|X




Recall the adjustment condition

Y, I T|X

p(Ye) = S pYilX = 2. T = {)p(X = 2,T = t') /

x,t’




Recall the adjustment condition

Y, I T|X

p(Ye) = S pYilX = 2. T = {)p(X = 2,T = t') /

x,t’

= Zp(Yt]X =z, T=pX =z,T=1t)

x,t’




Recall the adjustment condition

Y, I T|X

p(Ye) = S pYilX = 2. T = {)p(X = 2,T = t') /

x,t’

= Zp(Yt]X =z, T=t)p(X =x2,T=1)

x,t
:Zp(Yt]X:as,T:t)Zp(X:x,T:t’)
T t’




Recall the adjustment condition

Y, 1L T|X X

l
p(Y;f) — Zp(Y;]X:x,T:t’)p(X :l‘,T:t/) / W

x,t’

= Zp(Yt]X =z, T=t)p(X =x2,T=1)

x,t
=) pVX=2,T=1t)) pX=2T=t
x t’

— Zp(Y|X =, T = t)p(X — g;) [Only a function of obs]



Adjustment condition for representation

Y, 1L T|W X




Adjustment condition for representation

Y, 1L T|W X

l
p(Y3) :Zp(Y;]W:w,T:t’)p(W:w,T:t’) / W

w,t’

:Zp(Yt]W:w,T:t)p(W:w,T:t')

w,t’

:Zp(YtH/V:w,T:t)Zp(W:w,T:t/)

t/
— ZP(Y\W =w, T =t)p(W = w) [Only a function of obs]

We can use the same derivation replacing X with the representation W!



When does Y; 1L T|{W hold?

« Balanced: p(W|T=0) = p(W|T=1)
W | T /

* Informative: p(Y|W, X=x) = p(Y|W, X=x")
Y || X|W

{Y LX[WHAW LT} 2
Y, 1L T|X) =Y, L T|W



2.

Proof using Graphoid Axioms / \

Y: L T|X, W |d-separation]

Y L X|W =Y, 1L X|W [Assumption]



2.

Proof using Graphoid Axioms / \

Y L T|X, W |d-separation]

Y L X|W =Y, 1L X|W [Assumption]

Y, LX|W&Y; LTI X, W =Y, LT X|W |[Contraction]



Proof using Graphoid Axioms / \

Y: L T|X, W |d-separation]
Y L X|W =Y, 1L X|W [Assumption]

Y, LX|W&Y; LTI X, W =Y, LT X|W |[Contraction]

Y, LT, X|W =Y, ILT|W |Decomposition]



Proof using Graphoid Axioms / \

Y: L T|X, W |d-separation]
Y L X|W =Y, 1L X|W [Assumption]

Y, LX|W&Y; LTI X, W =Y, LT X|W |[Contraction]

Y, LT, X|W =Y, ILT|W |Decomposition]

This does not even use balanced treatment assumption!



Any informative representation that satisfies Y 1. X |W
can be used for adjustment.



Use of Balanced Representation

» Goal of the paper is NOT to do backdoor adjustment.

* Instead learn a balanced representation so we DO NOT need to
do any adjustment!

« How does that work?



Direct Modeling of Counterfactuals in PO
Learning Representations for Counterfactual Inference

Johansson, Shalit, Sontag

» Use a neural network for learning
representations that are balanced
across treatment, similar to domain

adaptation in ML.

« Similar to matching, make CF
estimate “close” to the most similar *
observed (covariate, treatment) pair.

« W = @(X) a representation that has
balanced distribution of the
pairs (W(x;),t)) and (W(x;),1-t)

L ﬂ

® I I—Gzoss(h (@, 1),)

~—



Direct Modeling of Counterfactuals in PO
Learning Representations for Counterfactual Inference

Johansson, Shalit, Sontag

* Hope is that R(X) is indep from T in the induced distribution.

» Balanced representation itself is not useful as a constant phi is
also balanced, but would not be predictive.

* Three objectives:

Bt an(®, 1) th yF |+ adiscy (BE, PSF) + 7Z|h (®(z:),1—t;) — yly)|

predictive balanced matching



Direct Modeling of Counterfactuals in PO
Learning Representations for Counterfactual Inference

Johansson, Shalit, Sontag

* What do we really want from W here?
X
/ l \ W
W .,
T 2% T Y
What we wish the true SCM was

True SCM

« With the causal graph on the right, we can then learn a function
h(t,w(x)) where h(1-t,w(x)) gives the CF.



Direct Modeling of Counterfactuals in PO
Learning Representations for Counterfactual Inference

Johansson, Shalit, Sontag

* What do we really want from W here?

X X
/ | \ / N W
|4
W N \
T > Y T > Y T Y
True SCM What we wish the true SCM was

« With the causal graph on the right, we can then learn a function
N(t,w(x)) where h(1-t,w(x)) gives the CF.

* If we assume there is a mediator W (the graph on the right), we can
nope to recover the true W or a version of it.




Direct Modeling of Counterfactuals in PO
Learning Representations for Counterfactual Inference

Johansson, Shalit, Sontag

* What do we really want from W here?
If Windep T, no

X need for adjustment!
l W
W _
W N \
T > Y T > Y T r Y
True SCM W LT What we wish the true SCM was

« With the causal graph on the right, we can then learn a function
N(t,w(x)) where h(1-t,w(x)) gives the CF.

* If we assume there is a mediator W (the graph on the right), we can
nope to recover the true W or a version of it.




Proof.
p(yldo(t) Zp ylt, w)p

If Windep T, no ~ Zp y|t w) (w‘t)

X need for adjustment!

AN
/ " _zpy,wu
N
> Y

T ,
WAL T ZMW)




TARNET

Shalit, Johansson, Sontag

* A follow-up to the previous paper.

« Some improvements such as the UL el LDty =1
use (_)f an integral prot_JabiIity el —(J L(ho(®),y = Yy)
metric (IPM) and multiple heads 0 ) ) 1PMG (52, 51

for different treatments.

« Same concept: Learn a balanced
representation, learn a mapping
to obtain counterfactuals.



Adapting Neural Networks for the Estimation of
Treatment Effects

Shi, Blei, Veitch

 The following theorem tells us that a specific

low dimensional representation is sufficient X

for adjustment: / \
Theorem?: Let X be a valid adjustment set. 7 Y
Then the propensity score g( X )is also avalid ~ causal Graph

adjustment set, where

glx)=P(T =1|X = ;L')

Then ATE =E[E|Y|g(X),T =1|] —E[E|Y|g(X),T = 0]]

1 Rosenbaum, Rubin, The central role of the propensity score in observational studies for causal effect, 1983



Adapting Neural Networks for the Estimation of
Treatment Effects

Shi, Blei, Veitch

 The following theorem tells us that a specific

low dimensional representation is sufficient X

for adjustment: / \
Theorem?: Let X be a valid adjustment set. 7 Y
Then the propensity score g( X )is also avalid ~ causal Graph

adjustment set, where .
g(z) = P(T = 1|X = z)

Not exactly

Then ATE =E[E[Y|g(X),T =1]] — E[E[Y |g(X),T = 0]] what they do!

1 Rosenbaum, Rubin, The central role of the propensity score in observational studies for causal effect, 1983



Adapting Neural Networks for the Estimation of
Treatment Effects

Shi, Blei, Veitch

* Use neural net to model conditional outcome
Q(t, ) = E[Y |z, ]
and propensity score
glx)=P(T =1|X = x)

* The hope is to tap into NNs ability to distill relevant information




Adapting Neural Networks for the Estimation of
Treatment Effects

Shi, Blei, Veitch

=L | Q)

* Find a good representation Z(X) that
can be used to estimate both propensity
score AND conditional outcome. —ol e

X\ 121 ] 90)

A regularization scheme motivated by the properties of good
estimators (fast convergence and lowest variance).

1 A A
0= - th(’yuti,%;Qagaw)

P02 Q9. 9) = QL,2) Q) + (s — 1o ) v = Qta)} — v

« Construct the loss function so that the stationary point enforces
the above equality!




Instrumental Variables

W: Fuel Price
T: Ticket Price / \
Y: # of Sales

X: Holiday Season

« Causal effect is identifiable under linearity assumption, e.g., by using 2SLS
(two stage least squares): Regress T on W to get T'. Regress Y on T’ to get a.

« Tighter bounds can be obtained using instrument W in general.



Deep IV: A Flexible Approach for
Counterfactual Pred.

Hartford, Lewis, Leyton-Brown, Taddy

« Assume the structural equation

of the form.

Y=9(T,X)+ L

* Given X=x, we want the

“counterfactual” do(T = t)

hit,z) = g(t,z) +

AN

4% il Y

*‘:[L‘X — 33] «— Notice no T =t here!

* Learning g is enough to decide
better intervention:  h(t1,x) — h(ts,x) = g(t1,x) — g(t2, x)



Deep IV: A Flexible Approach for

Counterfactual Pred.

Hartford, Lewis, Leyton-Brown, Taddy

 Recall:

h(t,z) = g(t,z) +

* Then

Y |z, w| =

ElY |z, w]

44

PN

Llg(T, X) + Llz, w| = Elg(T, X)
= E[g(T', X)

LIL|X = x|

F(t|z, w)

/ h(t,z)

N~
S
1=

x,w| + E|

We want solution to
this integral equation!



Deep IV: A Flexible Approach for
Counterfactual Pred.

Hartford, Lewis, Leyton-Brown, Taddy

E[Y |z, w] = / h(t, 2)dF (|2, w)

 Solve this integral equation in two stages.

* First do a density estimate of treatment given covariate and
instrument f(t|x,w).
* If tis discrete, use categorical distribution with softmax output as parameter.

* If tis continuous, model as mixture of Gaussians via mixture density network.



Deep IV: A Flexible Approach for
Counterfactual Pred.

Hartford, Lewis, Leyton-Brown, Taddy
 After neural density estimation of f(t|x,w) we focus on h.

* h is parameterized by a neural network as well.
* Then minimize the loss function over h.
n 2
m}}ﬂzzzl <yz — /h(t, ZEZ)CZF(ﬂZL’Z,’UJZ))

* Integral is replaced by Monte Carlo averaging



Deep IV: A Flexible Approach for
Counterfactual Pred.

Hartford, Lewis, Leyton-Brown, Taddy

Author notes:

* A challenge with using deep learning is extensive reliance on
hyperparameters.

 Lack of ground truth is a problem for choosing the best
hyperparameter set.

* Objectives that only rely on fitting observational data are more
powerful as they do not require test set.



Causal Inference with

Deep Learning and Generative Models
Outline

« A Taxonomy of Deep Learning Approaches for Causal Inference

 Feature Extraction



A Taxonomy of Deep Learning
Approaches for Causal Inference

Function Modeling Feature Extraction Generative Modeling




Feature Extraction

Representation Learning
A
X > Y

| atent Feature Construction

X > Y




| atent Feature Extraction
Wishful Thinking? Or “Shorter” Leap of Faith?

 Extracting latent features using neural networks seems more
acceptable in academic circles.

« Usually no guarantee that the extracted latents are
correct/sufficient for adjustment.

* Does a VAE extract causal features” Usually no.



Causal Effect Inference with Deep Latent-Variable

Models
Louizos, Shalit, Mooij, Sontag, Zemel, Welling
« Unobserved confounder Z prevent
sound adjustment. @
« Suppose a proxy X is available. @
* EX.: Genetic factors - Blood sugar
Socioeconomic - Zip code 7
X is proxy of
unobserved

confounder Z.



Causal Effect Inference with Deep Latent-Variable
Models

Louizos, Shalit, Mooij, Sontag, Zemel, Welling

 Use VAE to recover latents and use them for
adjustment. @

* When would this be sound? A sufficient @
condition is when we recover the correct

latents. When does that happen? Unclear.

Z
* Metric: ITE which in PO is defined as
ITE(xz) =E[y|X =z,do(t =1)] — E[y|X = z,do(t = 0)],

* A misnomer since stratifying with X usually
does not limit cohort to an individual.

ATE := E|[ITE(z)]



CEVAE Architecture
Causal Effect Inference with Deep Latent-Variable

Models
N

Louizos, Shalit, Mooij, Sontag, Zemel, Welling

p(x) q(ylt=0,x)  q(zlt=0,y,x)

) — — o/ &

> > p(ylt=0,2)
2 e > » .. —> . . :
_J _J - ) ) _ > ... —>» p(ylt=1 ,Z)
» > > > ... —> ] [

(— - — (—

Q(ZIt=1 ,y,X) p(;z)

q(tlx) q(ylt:1 ,X)

(a) Inference network, q(z, t, y|x). (b) Model network, p(x, z, t,y).
Z
Predict T from X, Predict T from Z,
Y from X, T X from Z

ZfromX, T,Y Y fromT, Z



CEVAE Architecture
Causal Effect Inference with Deep Latent-Variable

Models

Louizos, Shalit, Mooij, Sontag, Zemel, Welling

)
p(x) - - m m —
- - ﬁq(yltﬁ_o,x)ﬁ q(zIt_&y,x) i p(ylt=0,2)
> > ... > > > ... —> : : i
- 0 1 O R O B O L N N p(ylt=1.2)
> > r g » ... —> ] ‘—
- atlx)  qyit=1x)  q(zit=1,y,%)  piz)
(a) Inference network, q(z, t, y|x). (b) Model network, p(x, z, t, y).

D,
HN Z’U|0 1) Xz’Zz HP ng‘zz (t |Z’b) Bem( (fl(z’b)))
Marglnal dlst of unobs. conf. is assumed to be unit Gaussian.

How bad is this assumption really? The choice of function f can compensate
for the mismatch but only sometimes for specific graphs/queries.



The ldentifiability Problem

» Given p(T, Y, X), can we construct two SCMs with different
causal effects?

Z Z

A

T Y

« Say T, Y, X are discrete for simplicity, Z scalar Uniform[0,1].

* Drop X for now to see how we can do this always.



The ldentifiability Problem

» Given p(T, Y), can we construct two
SCMs with different causal effects?

« SCM1:
T =01t Z €
T =11t Z &

T\Y

0

N

p(2) A

A

0 1 4
Y =01t Z &
Y =11 Z &

Y




The ldentifiability Problem

1
» Given p(T, Y), can we construct two / \

SCMs with different causal effects?

T\Y

Z

0

0(2) IR S va avaveld
. SCMA1: [
a b C d
0 1)Z
T =01 Z & Y =01 Z &
T=1if Z € Y =1if Z €




The ldentifiability Problem

» Given p(T, Y), can we construct two
SCMs with different causal effects?

p(@ L
« SCM2:
a+b c+d
0 g
T =01 Z €
T =11 Z €

p(y|do(T' =1)) = p(y|T = 1)

T\Y| O

N




The ldentifiability Problem

» Given p(T, Y), can we construct two
SCMs with different causal effects?

c+d

p(AZ)
« SCM2:
atb
0
T =01t Z &
T =11t Z &

>

Z

Z

N

T\Y

0

I Y

A c/ (c+d)
0 a/(a+b)1)U
Y =01 U €& & T =0
Y =11 U €& T =0
Y =01t U €& T =1
&T =1

plyldo(T =1)) =py|T =1) Y =1ifU e




The ldentifiability Problem

» Given p(T, Y), can we construct two
SCMs with different causal effects?

c+d

p(AZ)
« SCM2:
atb
0
T =01t Z &
T =11t Z &

>

Z

Z

N

T\Y

0

I Y

A c/ (c+d)
0 a/(a+b)1)U
Y =01 U €& & T =0
Y =11 U €& T =0
Y =01t U €& T =1
&T =1

plyldo(T =1)) =py|T =1) Y =1ifU e




The ldentifiability Problem

» Given p(T, Y), can we construct two
SCMs with different causal effects?

p(Z)
A

« SCM3:

(a+b) / N

(c+d) /N

0

* |In between SCM1 and SCM?2
. SCM1

If 7/ €Y

Else . SCM2

— NN

>

Z

T\Y

p(U)
A

c/ (c+d)

a/(a+b) 1

N




The ldentifiability Problem

» Given p(T, Y), can we construct two
SCMs with different causal effects?

p(Z)
A

« SCM3:

(a+b) / N

(c+d) /N

0

* |In between SCM1 and SCM?2
. SCM1

If 7/ €Y

Else . SCM2

— NN

>

Z

T\Y

p(U)
A

c/ (c+d)

a/(a+b) 1

O\




The ldentifiability Problem

« Given p(T, Y, X), can we construct two SCMs with different
causal effects?

/4 Z

A

T Y

* Does presence of X change anything?

* Not really! Just do the same thing to attain p(T,Y|X) for different
values of X to show non-identifiability of p(y|do(t)).



CEVAE Training
Causal Effect Inference with Deep Latent-Variable
Models

Louizos, Shalit, Mooij, Sontag, Zemel, Welling

» Use variational lower bound to minimize the cross entropy loss
N

L= ZEQ(zi|xi>tz‘,yi)[]‘ng(xi7 ti|z;) + log p(yi|ts, z;) + log p(z;) — log q(z; %4, ti, yi)]
=1

But for inference we would need to estimate y, t given x and we
can learn these during training using the following model:

q(ti|xi) = Bern(m = o(ga(x;)))
q(yslxi t:) = N(p = fig, 0% =) g = ti(ge 0 g5(x:)) + (1 — t:) (97 © g5(xs))
q(yi|xi,t;) = Bern(m = ;) i = ti(g6 © g5(xs)) + (1 — ;) (g7 0 g5(xs)),
Composite loss then becomes:

N
Fcevag = L + Z (logq(t: = t;|x;) +1log q(yi = y; 1%}, 7)),
i=1



CEVAE Training
Causal Effect Inference with Deep Latent-Variable
Models

Louizos. Shalit. Mooii. Sontaa. Zemel. Wellina

Questions.

Does ELBO minimization lead to correct causal effect estimate?

How bad are the distributional modeling assumptions?



A Special Case of |dentifiable Latent Variable Models
Measurement bias and effect restoration in causal inference

Kuroki, Pearl

X s /

N




A Special Case of |dentifiable Latent Variable Models
Measurement bias and effect restoration in causal inference

Kuroki, Pearl
X < X > W
1 > Y 1 > Y

* Suppose we have two proxies X, W.




A Special Case of |dentifiable Latent Variable Models
Measurement bias and effect restoration in causal inference

Kuroki, Pearl
X 2 2
: / \ X / \ W
1 > Y 1 > Y

XU WI|Z X U W|Z

* Suppose we have two proxies X, W.

* Note that this is different from having a single multivariate proxy.



A Special Case of |dentifiable Latent Variable Models
Measurement bias and effect restoration in causal inference

Kuroki, Pearl 2014

» Under certain regularity conditions
(assumptions) causal effect of
T onY is identifiable!

 Finite support discrete Z, or
linear SCM.

* Expanded upon in 2018 by
Miao, Geng, Tchetgen with relaxed
assumptions.



Testing CEVAE on ldentifiable Two Proxy Setup
A Critical Look at the Consistency of Causal

Estimation with Deep Latent Variable Models
Rissanen, Marttinen

Proposition.

A linear CEVAE with a one-dimensional latent space estimates
the causal effect correctly, given that it reaches the global
optimum of the ELBO with infinite data.

Correct VAE training - Correct causal effect estimation
when latent is 1D in linear SCM



Testing CEVAE on ldentifiable Two Proxy Setup

A Critical Look at the Consistency of Causal
Estimation with Deep Latent Variable Models

Rissanen, Marttinen

(a) LLinear-Gaussian data
0.150 o _ o
0.125 - 1 Full CEVAE
. . | | Linear, 1D latent
Correct VAE training 0.100 - ean T
a [ Analytical
- = 0.075-
Correct causal effect 0.050 - d] [1] .

. . | III o
estimation . 0.025 % o [iﬁg, g e
when latent is 1D in linear 0.000 A 8 &
SCM Q O O Q X N O

\\\Q "D\\Q ‘3\\0 \&\0\\ \")QQ f\y\\\\\\ 3\\0\\

Sample size



Testing CEVAE on ldentifiable Two Proxy Setup
A Critical Look at the Consistency of Causal

Estimation with Deep Latent Variable Models
Rissanen, Marttinen

(b) Failed 2D estimation
When VAE latent space is T - t
overparameterized, CEVAE may fail: s o N\
— weight vect
ight vect
| ===t weight vv‘c‘lt(())rr
If we pick two dimensional CEVAE latent i e
_ . . — 0 1
space, authors show ELBO minimization g
may be insufficient for correct causal (6)  Correct 2D estimation

effect estimation. g

two latent dimensions but not always.

Posterior collapse helps pick one out of . Jﬁ
!



Testing CEVAE on ldentifiable Two Proxy Setup
A Critical Look at the Consistency of Causal
Estimation with Deep Latent Variable Models

Rissanen, Marttinen

When VAE latent space is
misspecified, CEVAE may fail:

If true latent is binary but CEVAE
assumes Gaussian latent, it may

failto converge.

(d) Binary data
0107 [0 CEVAE
[ Analytical
=
< (.05 1 = ¢ "
s L
DY ; lﬂ i g¢ @%
3 5
0.00 -— , , | ' | |
RO SMPRNSP S\ LT S S

Sample size



Testing CEVAE on ldentifiable Two Proxy Setup
A Critical Look at the Consistency of Causal

Estimation with Deep Latent Variable Models
Rissanen, Marttinen

Analytical method

®
['é‘,
>
vyl
C

&
b

(e)

i %__i__é____%__?__ﬁ__é v (0.4 2

’e’ S [EYE A S S
2 0.3 | =

ok == True p(y = l|do(t =0)) &

~ True p(y=l|do(t = 1)) 502 % % % é é é %

I
ey —_—y (_).()"'llrr

O O 0 MO NN N O A0 AN O N NN
(O A L P (O A I P
Sample size Sample size

CEVAE may still be useful for decision-making even though
effect estimates are not precise under misspecification.



Deep causal feature extraction and inference with
neuroimaging genetic data

Yao, Chakraborty, Zhang, Shen, Pan

» Gene — Brain MRI — Alzheimer’s Disease (AD)

A — B
SN TN
§ — @ > AD §—>f(@) - AD

|V setup Assumed IV setup




Deep causal feature extraction and inference with
neuroimaging genetic data

Yao, Chakraborty, Zhang, Shen, Pan X /\
« Gene — Brain MRI — Alzheimer’s @4 0
Disease (AD) / \ \

» High-dimensional brain imaging § _'f(@) > AD

data not suitable as treatment in 7 Y
regular IV setting. Assumed |V setup

* Extract causal features from brain stage 1 : f(X)=B'Z+U; +A;

MRI images associated with aoe D - Y = BTF(X A
causal genetic factors for AD. SHEE < - FYX)+ U+ A,



Deep causal feature extraction and inference
with neuroimaging genetic data

Yao, Chakraborty, Zhang, Shen, Pan
SPN
V4 § (Single-Nucleotide
Polymorphisms)

Y
A Convolutional » f(X) .. AD
Neural Network
.1 N " .1
min—||Y, — ZpBy 15 + Q(0, p). B, = min —|Ifo(Xs) — ZyBI|5 + Al|BI|;
0.6 np B np



Many more interesting

BMC Cancer

Taghados et al. BMC Cancer (2025) 25:607
https://doi.org/10.1186/512885-025-13926-2

. . ®)
CausalCervixNet: convolutional neural et

networks with causal insight (CICNN) in cervical
cancer cell classification—leveraging deep
learning models for enhanced diagnostic
accuracy

Zahra Taghados', Zohreh Azimifar'", Malihezaman Monsefi> and Mojgan Akbarzadeh Jahromi?

papers

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, XXX 1

Casual Inference via Style Bias Deconfounding for
Domain Generalization

Jiaxi Li, Di Lin, Member, IEEE, Hao Chen, Senior Member, IEEE, Hongying Liu, Member, IEEE,
Liang Wan, Member, IEEE, and Wei Feng, Memeber, IEEE

Abstract—Deep neural networks (DNNs) often struggle with
out-of-distribution data, limiting their reliability in diverse real-
world applications. To address this issue, domain generalization
methods have been developed to learn d iant features
from single or multiple training d ing generalization
to testing d ins. H , existing approaches usually
overlook the impact of style frequency within the training set.
This oversight predisposes models to capture spurious visual cor-
relations caused by style confounding factors, rather than learn-
ing truly causal representations, thereby undermining inference
reliability. In this work, we introduce Style Deconfounding Causal
Learning (SDCL), a novel causal inference-based framework
designed to explicitly address style as a confounding factor. Our
approaches begins with constructing a structural causal model
(SCM) tailored to the domain generalization problem and applies
a backdoor adjustment strategy to t for style infl

£ dats

on this ion, we design a style-guided expert

hi

Deep Causal Reasoning for Recommendations

YAOCHEN ZHU, School of Remote Sensing and Information Engineering, Wuhan University, Wuhan,

China

JING YI, School of Computer Science, Wuhan University, Wuhan, China
JIAY1 XIE, School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China
ZHENZHONG CHEN, School of Remote Sensing and Information Engineering, Wuhan University,

Wuhan, China

Traditional recommender systems aim to estimate a user’s rating to an item based on observed ratings from
the population. As with all observational studies, hidden confounders, which are factors that affect both
item exposures and user ratings, lead to a systematic bias in the estimation. Consequently, causal inference
has been introduced in recommendations to address the influence of unobserved confounders. Observing that
confounders in recommendations are usually shared among items and are therefore multi-cause confounders,
we model the recommendation as a multi-cause multi-outcome (MCMO) inference problem. Specifically, to
remedy the confounding bias, we estimate user-specific latent variables that render the item exposures in-

M Domain A
M Domain B
M Domain C

Prediction

Causal
Intervention

3
Prediction @

Fig. 1 A schematic before and after causal intervention. Before
intervention: The model relies on frequently occurring style types
(orange oval) to make predictions. After intervention: Different style
features from the source domain (green, blue) are fairly incorporated
into the prediction of the current sample (orange), enabling the model
to consider global styles comprehensively, thus eliminating style bias.

® Class1
A Class2



A Taxonomy of Deep Learning
Approaches for Causal Inference

Function Modeling Feature Extraction Generative Modeling

f R = 10,1]




Generative Causal Modeling

e A structural causal model contains a bunch of functions, read as
assignment operators.

* We can try to approximate these functions to simulate the full SCM.

 But this is tricky because we do not have access to all variables
affecting the system.



Generative Causal Modeling

« Even without latent confounders, there are exogenous variables.
71U

Y=f(X, U) l
X > Y X > Y

* Trying to learn true function in SCM is an impossible task!

 Maybe we can get away by choosing our own noise variable
instead of true exogenous variable?

« Can we guarantee anything though?



Need for Neural Nets with High-dimensional Data

« Estimating probability distributions in ID expressions is impractical

Covid
Symptoms (C)

\J

Xraylmages (X)
Y

Pneumonia
Diagnosis (N)

Hospital
Location

COVIDx CXR-3 dataset

P(N|do(C)) = > P(X|C)) P(N|X,C")P(C")
X C'’

P(X|0)

143



Need for Neural Nets with High-dimensional Data

« Estimating probability distributions in ID expressions is impractical

Covid
Symptoms (C)

\J

Xraylmages (X)
Y

Pneumonia
Diagnosis (N)

Hospital
Location

COVIDx CXR-3 dataset

P(N|do(C)) = > P(X|C)) P(N|X,C")P(C")
=

X

P(X|0)

Age (A)
Ventricle Brain
volume V) volume (B)

T

Sex (s)

&

M

UK Biobank Brain MR

P(M|do(V)) =) P(M|V,A,B)P(A,B)
A,B

P(M|V, A, B)



Need for Neural Nets with High-dimensional Data

Deep Generative Models are great at sampling from high-dimensional distributions.

How can we leverage them to sample from interventional distributions?



Key Idea

A structural causal model sequentially generates data in the causal order.
Each structural equation uses some observed and unobserved variables.

We can mimic this process using neural networks.




Key Idea

Real Data-generating Process
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Key Idea

Real Data-generating Process Causal Simulator
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Key Idea

Real Data-generating Process Causal Simulator

4

Causal Graph

Ny Feed Forward NN .
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Key Idea

Real Data-generating Process Causal Simulator
L
QO
(©
| -
(D et enmae e e e inn e —n———————
©
n
s 7
Q)
O N Feed Forward NN .

=)

=» g e

Real Data Fake Data

(UNKNOWN)

UNKNOWN

Structural Equations

How can we ensurep=q ?



CausalGAN

Use GAN Training to Fit to the Observed Data

Ny Feed Forward NN

III
\FeedForwardNN j \ Z >[ Discriminator ]-> P(Real)
Conditioning vs. Intervening on Mustache

N~

Assumption 1: Causal graph is given and has no latent variables.

Assumption 2: Distribution is strictly positive.

Theorem: The optimal generator can be used to

IT:OLCI:’(;%IU etal.  sample from any interventional distribution.

M. Kocaoglu*, C. Snyder*, A. G. Dimakis, S. Vishwanath, "CausalGAN: Learning Causal Implicit Generative Models with 151
Adversarial Training," in Proc. of ICLR 2018, VVancouver, Canada, May 2018.



CausalGAN

Note that this simple idea extends to when latent confounders are present.

It extends even beyond interventional distributions (e.q., counterfactuals!).

M. Kocaoglu*, C. Snyder*, A. G. Dimakis, S. Vishwanath, "CausalGAN: Learning Causal Implicit Generative Models with
Adversarial Training," in Proc. of ICLR 2018, VVancouver, Canada, May 2018.



Claim:

Any DCM (deep causal model) that entails observational distribution can be
used to sample from any identifiable interventional distribution.
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Claim:
Any DCM (deep causal model) that entails observational distribution can be
used to sample from any identifiable interventional distribution.

Proof

1) Any identifiable p(y|do(x)) is a fixed function of obs. joint p(v) given
the causal graph:

p(yldo(x)) = g(p(v))

i) DCM is just another SCM that entails the same causal graph as
true SCM.



Claim:
Any DCM (deep causal model) that entails observational distribution can be

used to sample from any identifiable interventional distribution.

Proof

1) Any identifiable p(y|do(x)) is a fixed function of obs. joint p(v) given
the causal graph:

p(yldo(x)) = g(p(v))

i) DCM is just another SCM that entails the same causal graph as
true SCM.

i) Int. dist. induced by DCM q(y|do(x)) is the same function of joint.



Claim:
Any DCM (deep causal model) that entails observational distribution
can be used to sample from any identifiable interventional distribution.

Proof

1) Any identifiable p(y|do(x)) is a fixed function of obs. joint p(v) given
the causal graph:

p(yldo(x)) = g(p(v))

i) DCM is just another SCM that entails the same causal graph as
true SCM.

i) Int. dist. induced by DCM q(y|do(x)) is the same function of joint.
iv) It q(v) = p(v), we have q(y|do(x)) = g(q(v)) = g(p(v)) = p(y|do(x))




Generative Causal Modeling
Takeaways

» Given the causal graph of the system, parameterize the generative
function for each observed variable with a neural net.

* Model latent confounders with high dimensional Gaussian noise.

* Fit (e.g., via GANs) the joint distribution as you optimize the neural
networks that generate the observed variables.

* Any identifiable causal query is correctly sampled from after
convergence.



Pros and Cons of Generative Causal Modeling

Pros

Non-parametric, can model a
rich, non-restrictive class of
structural causal models.

A trained model can be used
to answer any identifiable
causal question.

Pretty much only way to
handle the presence of high-
dim variables (e.g., images)

Cons

Fitting high-dimensional
distribution is often challenging
(e.g., GAN convergence issues).

Sampling based estimation, no
closed-form expression.

Feedforward nature makes anti-
causal sampling challenging
(rejection sampling).



End of Part I.

Come back for Part Il for some cool image problems and
state of the art generative models!

Questions?



UAI 2025 Tutorial (Part 2)

Murat Kocaoglu Md Musfiqur Rahman

Purdue University Purdue University
(@JHU in Fall 2025)



A Taxonomy of Deep Learning Approaches for Causal
Inference

Function Modeling Feature Extraction Generative Modeling

X f(X) Ny Feed Forward NN



Outline

 Structural Causal Models (SCMs)
* Neural Networks with SCMs

« Causal Inference with Tabular Data — Interventional Sampling
« Causal Inference with Images — Interventional Sampling

 Causal Inference with Tabular Data — Counterfactuals

« Counterfactual Inference with Empirical Success — Relaxing
Theoretical Guarantees

« Causal Inference with Images — Counterfactuals



Structural Causal Models
(SCM)



Structural Causal Models (SCM)

Causal Graph

_________________ -

Vertices: Random variables

X; = fi(Pa;, E;) Edges: Causal relations

Pa; : Set of parents of X;in the causal graph

"Structural Causal Model" (SCM): A model in which each variable is a function of its parent variables
and independent "exogenous" random variables.



Structural Causal Models (SCM)

Xi = fi(Pai, E;)

Unknown _
Pa; :Setof parents of X; in the causal graph

ground truth
SCM

Observational data
generated from the SCM

Observed




Structural Causal Models (SCM)

Causal
Graph

T...

Training
Data




Structural Causal Models (SCM)

Causal
Graph

Approximate

Sifilciira

functions

T...

Training
Data




Proxy of the Data Generating Process
* We can learn a proxy of the structural causal model.

« Why is it a proxy? Why can't we learn the original SCM?



Structural Causal Models (SCM)

Causal

Approximate

Sifilciira

functions

Xz' — fi(PCLZ', >l<)

Training

Data

Its challenging because we can never know the true
environment variables Ei and thus the true functions f i ! 10



Structural Causal Models (SCM)

After learning an approximation of the SCM, we can estimate the
associated

 Observational distribution
* Interventional distribution
 Counterfactual distribution



SCMs with Neural Networks



Estimating causal effect from data D~P(V)

Smoking Gene

(1 y—

Smoking Tar in Lung
Lungs Cancer

Causal effect of smoking on Lung cancer, P(C|do(S)) =7

13



Estimating causal effect from data D~P(V)

| Previous
Smoking Gene disease history

o ~ . Unobserved

s g N
\ Confounders
\
o Treatment \\
\

,@ Progression
of HIV

Leaming causal effects via weighted empirical risk minimization, jung2020learning

(1 y—

Smoking Tar in Lung
Lungs Cancer

CDA4 cell
counts

Causal effect of CD4 cell counts on progression of HIV, P(H|do(C)) =7

14



Estimating causal effect
|dentification algorithms by Shpitser et al 2008, Tian et al 2002.

| Previous
Smoking Gene disease history

Unobserved
Confounders

O

Smoking Tar in Lung
Lungs Cancer

CDA4 cell
counts

Progression
of HIV

Leaming causal effects via weighted empirical risk minimization, jung2020learning

P(C|do(S ZP T|S) ZP (C|S', T)P(S")

15



Estimating causal effect

|dentification algorithms by Shpitser et al 2008, Tian et al 2002.

Smoking Gene

O

Smoking Tar in Lung
Lungs Cancer

P(C|do(S ZP T|S) ZP (C|s', T

P(H|do(C)) =

Previous

disease history

Unobserved
Confounders

CDA4 cell
counts

Progression
of HIV

Leaming causal effects via weighted empirical risk minimization, jung2020learning

')

2.p P(C,H|D,T)P(D)
2.p P(C|D, T)P(D)

16




Why do we want to learn the SCM?

* |[dentification algorithms are query-specific.

* For a new query, the estimation might need to be done from
scratch.

* With a learned SCM, we can answer any identifiable causal
guestions.



Why do we use Neural Networks for learning SCMs?

* Due to the expressive power of neural networks, we can match
arbitrary observational distributions

* (e.q., data might come from linear, nonlinear, additive, non-
additive, or nonparametric SCMs).



How do we use Neural Networks for SCMs?

* No unobserved confounders

S |

» ﬂFX

e Feed Forward NN M I N =

- R 1 g . N =
%ed Forward NN
> — — Y

Ny Feed Forward NN




Structural Causal Model with Neural Networks

* Unobserved confounders ( represented as bi-directed edges)

™) A0

D — @ ooe

(a) (b)

Gx

X=X

>

()

Before and after intervention.

@Gz:@@




Causal Inference with Tabular
Data

Interventional Sampling



Problem Definition

* Suppose we have collected a dataset.

If we train an estimator on it, the prediction is unfair (e.g., gives
more priority to a specific subgroup of the population due to
their specific attributes or variables).

« Can we learn an SCM from the unfair data and perform
interventions to generate fair synthetic data”



DECAF: Generating Fair Synthetic Data Using
Causally-Aware Generative Networks

Van Breugel, B., Kyono, T., Berrevoets, J., & Van der Schaar, M, 2021

* Generates fair synthetic data from unfair data

* By learning underlying data-generating process (DGP/SCM)
with GAN training on tabular data.



Conditional Fairness

« X: random variables with distribution P(X)
* A: protected/sensitive attributes
 Y: Target variable

Conditional Fairness (CF): A predictor Y is said to be
conditionally fair if the sensitive attribute A is condition-
ally independent of the prediction Y given R, i.e.,

ALY |R,
which implies:

Vr,a,a': PY|R=r,A=a)=PY |R=rA=4d).



DECAF

* Features are generated sequentially following the topological
ordering of the underlying causal DAG

. ﬁa(Xi) are generated causal parents

« /., isindependently sampled from P(Z). (e.g. standard
Gaussian)



DECAF: Model Training

 Generates Fake Data. Training phase
. L
« Compares with the real data ABDYC .
with a discriminator. — Xc7] [
GalG BIGD ,': Discriminator
Pa(X;) in

max min E[log D(G(Z)) + log(1 — D(X)],
{G’i}?:l D



DECAF: Inference

Uniformly Sample parents of the deleted

edges.
e Inference phase
950 =
when R = C": X; 8
When B E R‘ x Parents based on intervened DAG

ALY |R,



Problem Definition

« Can we use neural networks to understand if a causal effect
can be estimated uniquely from given observational data? i.e.,
test for identifiability.

* |If so, can we obtain the estimate at the same time?



The Causal-Neural Connection: Expressiveness,

Learnability, and Inference
Xia, K., Lee, K. Z., Bengio, Y., & Bareinboim, E. (2021)

* Follows the same architecture proposed by CausalGAN.

« Performs identification of interventional queries with
minimization and-maximization.

* [dentification of Interventional queries in presence of
unobserved confounders.



NCM ldentifiability

We search for our solution SCMs in
two different runs.

Each run maintains two loss functions:

Observational 2 Interventional

. (L£1) Distributions - » (L5) Distributions
 Loss 1: Matches observational Query
distribution. Figure : P(y | do(x)) is identifiable

from P(V) and Q(G) if for any SCM
M* € QF and NCMs M7, My € € (top

_ C : : left), Mhﬂg,/\/t* match in P(V) (bot-
* Loss 2 : Optimizes the interventional o, ieft) and G (top right). then the NCMs

qguery (maximize or minimize) M, My also match in P(y | do(x)) (bot-
tom right).



NCM: Architecture & loss/objective

 Matches both observational and maximizes/minimizes the
interventional distribution at the same time.

0 carg méin Ep«v) [— log pM(G:0) (V)

Loss 1: n

1 A—"'-"“-..
~argmin — Y —log PM 90 (vy). (4
arg min — 2 og P (V) (4)

To simultaneously maximize pM (y | do(x)), we

subtract a weighted second term log ﬁﬂ]‘f (y | do(x)),

Loss 2- resulting in the objective L({vy}}_;) equal to

1 o AT o~
=Y —log Pyl (vii) = Mog Pl (v | do(x)), (5)
k=1



NCM: Architecture & loss/objective

] Algorithm Sketch: NeurallD
* Two solutions (let SCM1 and SCM2) || .. queny 0 = . | %), dataset 20

are found from the independent runs causal graph G
and both have matched the training « Train NCM: M + NCM(V, )

distribution. = Search:
— 07, < argming Pﬁ(a)(y* | X.)
— 0} .« ¢ argmaxg Pﬁ(g)(y* | X4)
* \What about their causal effects? _ subject to Z(3(0)) = Z(M*)
« SCM 1 maximizes the effect. - Decision:
* SCM 2 minimizes the effect. - PMOL)(y, | x.) # PMCad(y, | x.),
then FAIL

— Else, return PM)(y, | x,) (choose min or
max arbitrarily)

= Output: Estimated P(y. | x,) if identifiable;
otherwise FAIL



NCM: Architecture & loss/objective

Algorithm Sketch: NeurallD
= Input: Query Q = P(y. | x.), dataset Z(M™*),

* What about their causal effects? causal graph G
« SCM 1 maximizes the effect. » Train NCM: M + NCM(V,G)
« SCM 2 minimizes the effect. = Search:
— O < argming PM@ (y, | x,)

— 6%, < argmaxg PMO)(y, | x,)

* |[f there exists a gap between the e _
. — subject to Z(M(6)) = Z(M*)
maximized causal effect and the
minimized causal effect,

= Decision:
— If PMOa)(y, | x,) # PMOad(y, | x,),
then FATL

— Else, return PM)(y, | x,) (choose min or

* The effect is non-identifiable. max arbitrarily)

= Output: Estimated P(y. | x,) if identifiable;

* Otherwise report the estimate. otherwise FAIL



NCM: Results

Identifiable

(a) (b) (c) (d)
- | 0,
G e, T
G— o

=
~
w

Max - Min ATE
o o
N (¥ ]
(0] o

o
o
=)

N NN

0 1000 2000 30000 1000 2000 30000 1000 2000 30000 1000 2000 3000

Training Iterations



NCM: Results

Non-Identifiable

FW G0 T @5

0 1000 2000 30000 1000 2000 30000 1000 2000 30000 1000 2000 3000

Training Iterations



Limitations

* Presence of unobserved confounders
* Finite sample error.

* High-dimensional variables.

« Sampling variation.



What happens if the causal effect is non identifiable?

* Even though we know the true graph and can match the
observational training data distribution.



Partial identification of treatment effects with implicit

generative models
Balazadeh Meresht, V., Syrgkanis, V., & Krishnan, R. G. (2022).

« Addresses this problem by performing partial identification of
average treatment effects for both discrete and continuous

variables.

e Continuous treatments



Partial identification of treatment effects

 Due to the continuous treatment, we need a new definition for
ATE.

Definition (Average Treatment Derivative). For the treatment regime fr
in SCM M, we define the average treatment derivative (ATD) as

8YM(T:t) (u)
ot

2

ATD yq = Eup, [

t=T(u)



Definition 4 (Partial Identification of ATD). Partial identification of ATD
is the solution to the following optimization problem:

in ATD aq/ ATD t. Pyw=P & ) =
(i3, ATDs, g ATDL ) st P =9

where M is the set of all SCMs on random variables V.

Finite sampling error:

(mgn ATDMg: max ATDMg) s.t. Wi (PMg,P”) < ay,

where o, s a hyper-parameter that specifies the level of tightness of the bounds.

Sinkhorn divergence, a differentiable approximation to the Wasserstein distance,
as the measure of distance between distributions and solve the following:

mgnrilgé( ATDMeg + A (SE (PMS,P ) — an)



Partial identification of treatment effects

The value of Yiue (T = t)(u) can be calculated by hard intervention T" = t, i.e.,

fixing the output of function f% as t and computing Y through a topological order
of calculations. Then, ATD (¢ is estimated as follows:

1 - 1 ( 1 7 )
ATD 0 » EZ;E Vs (T = 10 4+ () — ¥y (T = 19) ()

where {t()1" . are samples from the treatment variable, and {u(®}?_; are the
latent variables generated from a uniform distribution.



Results:

— E[Y:] — E[Yi,] -===Our Bounds —-—- GAN Bounds

Real samples

EING — —2 0 2 6 4 9 0 2
S 133K oL
g = — —X.. —-)(—\,—\-j)(‘-/—./_x_:\j_*___..x____-_—xx':‘_"%-r:__xhsh*’
x N, e N
N _
_*_;_;xuzmmw
-___*______X__...---)%-.____x___.—)(-..,__lx’___
el
05 X —208
~15 —10 -5 0 5 "y = 5 5

Treatment. T



Causal Inference with Images
Interventional sampling



Problem Definition

Hospital

+ 30,000 patients' data —
* Covid-19 Symptom
* Chest X-ray images Covid-19 _,Chest ~_ Pneumonia
* Pneumonia Diagnosis Symptom (C') X-ray(X) Diagnosis (V)

From 51 countries (but unobserved for each patient)

* Goal: how likely an average Bersc_)n is to be diagnosed with pneumonia if
’ahey have Covid symptoms. Predict Covid symptoms -> Pneumonia
lagnosis

* Possible Solutions:

« Covid -> Pneumonia diagnosis : P(N|C)

44



Problem Definition ol

Location
. 30,000 patients' data / \

Covid-19 . Chest . Pneumonia
Symptom (C) X-ray(X) Diagnosis (V)

* From 51 countries (but unobserved for each patient)

« Socio-economic and health conditions in a specific location might affect both the
likelinood of getting Covid and quality of local health care for Pneumonia diagnosis.

 Shift in the location causes shift in associated mechanisms while keeping other
mechanisms invariant

» Possible Solutions: (Biased prediction? Can we trust the model?)
e Covid -> Pneumonia diagnosis : P(N|C)

45



Problem Definition

Hospital
. ' Location
« 30,000 patients' data
* Covid-19 Symptom
e Chest X-ray images Covid-19 Chest Pneumonia

N __, Pneumor
 Pneumonia Diagnosis Symptom (C) ~ ~ X-ray(X)  Diagnosis (V)

 From 51 countries (but unobserved for each patient)

* Assumption: No edge to hospital location to Chest Xray, otherwise effect
non-identifiable.

« Estimate the causal effect: P(N|do(C)) instead of P(N|C)

46



Deep Causal Generative Models

Hospital
Location
UCTL
Covid-19 Chest Pneumonia

Symptom (C) ~ X-ray(X) _ Diagnosis (V)

C = fe(ne,Uen)

X = fx(C,nx) ]Ic-lowt.can \]:ve Ihe_a[]n C’;_he un|_<nOV\|/n st_rug;turil
unctions for high-dimensional variables®

N = fn(X,nn, Uey) J

47



Deep Causal Generative Models (Similar to CausalGAN)

Hospital . Ucn ~ N(0,1) (Represents the confounder)
Location = .
Ucn ne ~ N(0,1) .
Covid-19 N Chest N Pneumonia O C
Symptom (C') X-ray(X) Diagnosis (V) 8
GC (nC: UCN)
C = fc(nc,Uen)
X = f X (C s T X)
N = fN(X, NN, Ucn)

48



Deep Causal Generative Models (Similar to CausalGAN)

Hospital ' Ucn ~ N(0,1) (Represents the confounder)

Location < .—
Uen e~ MO Y ®
O 1 4
Covid-19 Chest Pneumonia > c B X
Symptom (C) ~ X-ray(X) _ Diagnosis (V) 8 @ g g
""" o | I

fc(ne,Uen)
fX(Cv nX)
fN(X7 nn, Ucn)

C
X
N

49



Deep Causal Generative Models (Similar to CausalGAN)

Hospital
Location

/

Covid-19

UC’I’L

Chest

Pneumonia
O~

Symptom (C) ~ X-ray(X) _ Diagnosis (V)

C = fc(ne,Uen)
X = fx(C,nX)
N:fN(XanNaUcn)

-l

Ucn ~ N(0,1) (Represents the confounder)

-

1

'

'

1

'

]

1 -

1

|

'
' '
1 1
1 1

:‘;N(X; Ny, UCN)
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Deep Causal Generative Models (Similar to CausalGAN)

Hospital Ucn ~ N(0,1) (Represents the confounder)

Location < . >
Uen ne ~ N(0,1) ¥ L /

- - O
Covid-19 Chest Pneumonia = C
Symptom (C) > X-ray(X) " Diagnosis () O @™

L’;-N(X; Ny, UCN)

C = fc(nc,Uen)
X = fx(C,nx)
N:fN(XanNaUcn)

Real Data Fake Data

p(C, Xray, N) =z q(C,Xray,N)  Need this but.

p(Xray) = q(Xray) Discriminator might do this!



Modular learning of deep causal generative models

for high-dimensional causal inference.
Rahman, M. M., & Kocaoglu, M. (2024).

i{gsé‘g;ltglll - : Ucn ~ N(0,1) (Represents t}he confounder)
/ \ o N0 ®
O N i :
Covid-19 Chest Pneumonia > c - W |
Symptom (C) ~  X-ray(X)  Diagnosis (V) 8 . : ‘
S 0} 1’ &
Ge(ng, Uow) O
C = fc(ne, Uen) O~y BO)
X = fx (Ca nx ) .
N — ¥ 7 * Modular training based on c-component
= fn(Xonn, Uep) Eacc}\(l)}r)lzatlon is proposed. (confounded :

* Train models i) [Gy] and then ii) [G, G\].

52



Modular-DCM

Hospital
Location

UC’I’L

Covid-19 N Chest N Pneumonia
Symptom (C') X-ray(X) Diagnosis (V)

X = fx(C, nx)

53



Modular-DCM

Hospital

Location
Ucn

Covid-19 . Chest . Pneumonia
Symptom (C) X-ray(X) Diagnosis (V)

:;—N(X, ny, U(_‘,'N)

C' = fe(ne,Uesp) - Freeze Gy
X = fx(C,nx) It is shown that this modularization provides
N = fn(X,nn, Udy) * Better convergence

* Theoretical guarantee of plugging-in pre-
trained models.

54



Open Problems

* Positivity violations
 Acyclicity violations / Feedback loops.
 Partial/No Causal graphs.



Causal Inference with Tabular
Data

Counterfactuals



Three Steps of Counterfactual

Theorem Given a model (M, P(u)), the conditional probability P(Bx | e)
of a counterfactual sentence “If it were X then B,” given evidence e, can be
evaluated using the following three steps:

1. Abduction: Update the distribution P(u) by the evidence e to obtain
the posterior P(u | e).

2. Action: Modify the model M by performing the intervention do(X),

where X is the antecedent of the counterfactual, resulting in the submodel
Mx.

3. Prediction: Use the modified model (Mx, P(u | e)) to compute the
probability of B, the consequence of the counterfactual.

Causality: models, reasoning, and inference, by judea pearl, cambridge university press, 2000.



Neural Causal Models for Counterfactual

Identification and Estimation (Similar to NCM)
Xia, K., Pan, Y., & Bareinboim, E. (2022).

* Checks identifiability of

Algorithm Sketch: NeurallD

= Input: Query Q = P(y. | x.), dataset Z(M?*),

counterfactual queries using causal graph G
learned NCMs. = Train NCM: M < NCM(V,G)
= Search:
. . = Ofyin + argming PMO(y, | x.)
* Trains two models with same 90« argmaxs POy [x.)
observational fit and compares _ subject to Z(F1(8)) = Z(M")
their counterfactual outputs after . Decicion:
maximizing and minimizing. U PG (y. | %) £ PA O (g, | ),
then FAIL

— Else, return PM@)(y, | x,) (choose min or
max arbitrarily)

» Returns prediction only if all
. » Qutput: Estimated P(y. | x.) if identifiable;
consistent models agree. ctherwice FALL



GAN-NCMs

Algorithm Sketch: NCM Counterfactual Sampling

» Use rejection sampling:
» Goal: Sample counterfactual outcomes Y, conditioned on X, = x,

« Sample random noise from the using a trained NCM M (6).

model's input distribution. . Steps:

1. Initialize an empty set S < 0.

« Simulate the model; keep samples 2. Repeat until 5| = m:
that match the desired condition. ~ Sample exogenous noise: 1 ~ P(U).
— Simulate X, = X*M(e)(ﬁ).
_ - If X, = x., then:
 Collect the corresponding output as + Compute counterfactual ¥, = Y (q).
a counterfactual sample. + Add to sample set: S « SU{Y.}.

3. Return S as the final set of m counterfactual samples.

* Repeat until we have enough
valid samples.



GAN-NCMes: Limitations

 Although okay for binary, rejection sampling to collect
exogenous noise might be infeasible for high dimensional
variables

* We might have to wait infinite time to obtain the expected
number of samples



Counterfactual Inference with
Empirical Success

Relaxing Theoretical Guarantee



Abduction

e Diffusion models ?
e Variational auto encoders
* Normalizing flow.



Basics of Diffusion Models ittt

We can represent diffusion models as a fixed Markov chain that adds Gaussian noise
with variances 81, ..., 87 € (0, 1), generating latent variables X*!,..., X7

a(X" |a") = N (X451 =Bt~ Bud
q(X* | z°) =N'(Xt; Joagx°, (1 — at)I)

where a; = []:_,(1 — ;). For large T and a; — 0 we have X7 distributed as an
isotropic Gaussian. Po(Xt-11%r)

q(xelxe-1)

4 -———— Forward Diffusion

______ -» Reverse Diffusion



Basics of Diffusion Models ittt

We can represent diffusion models as a fixed Markov chain that adds Gaussian noise
with variances 81, ..., 87 € (0, 1), generating latent variables X*!,..., X7

a(X" |a") = N (X451 =Bt~ Bud
q(X* | z°) =N'(Xt; Joagx°, (1 — at)I)

where a; = []:_,(1 — ;). For large T and a; — 0 we have X7 distributed as an
isotropic Gaussian. Po(Xt-11%r)

» Reverse diffusion process:
pg(Xt_1 | 2") = N(Xt_l; to(x,t), Lo (zh, 1)).

q(xelxe-1)

4 -———— Forward Diffusion

______ -» Reverse Diffusion



Basics of Diffusion Models ittt

We can represent diffusion models as a fixed Markov chain that adds Gaussian noise
with variances 81, ..., 87 € (0, 1), generating latent variables X*!,..., X7

a(X" |a") = N (X451 =Bt~ Bud
q(X* | z°) =N'(Xt; Joagx°, (1 — at)I)

where a; = []:_,(1 — ;). For large T and a; — 0 we have X7 distributed as an
isotropic Gaussian. Po(Xt-11%r)

» Reverse diffusion process:
po(X'H [ 2" = N(X'H (2!, 1), Xg (2, 1))
Ethnif{[T]}[Hc‘i — 59(\/@_th +v1—oge, t)\|2]7 q(xe|Xe-1)

0
X ~ Q 4 -—————- Forward Diffusion
ENN(O, I) ------ -» Reverse Diffusion




Denoising Diffusion Implicit Models (DDIM)

* Use a pretrained DDPM model to obtain a deterministic sample
given noise.



Interventional and Counterfactual Inference with Diffusion
Models

Chao, P, Blobaum, P., & Kasiviswanathan, S. P. (2023)

- Given a causal graph over endogenous variables. (X1, .-, Xk)

t
. Z?: Each variable at diffusion step t of the forward implicit
diffusion process.

. Xf Each variable at diffusion step t of the reverse implicit
diffusion process pf)w

(a) Chain graph.



DCM: Training for Each Node

A diffusion model is trained for each node, with denoised parent
values as input using classifier free guidance.

Algorithm 1 DCM Training
Input: Distribution Q, scale factors {a; }7_;, causal DAG G with node i represented by X;;

1: while not converged do
2. Sample X° ~ @

32 fori=1,..., K do

4: t ~ Unif[{1,..., T}

5: e ~N(0,14,) {d; is the dimension of X}

6: Update parameters of node 4’s diffusion model &%, by minimizing the following loss:
le — ep(vaX? +vI— o, X2 03

7.  end for

8: end while




DCM: Observational Sampling/ Interventional Sampling

* Use a pretrained DDPM model to obtain a deterministic sample
given noise.

* Reverse implicit diffusion process (Decoding)

X;—l . Qg lX,f—é“g(Xt Xpaiat) (\/Oét 1(1—ay) \/1_at 1)

Algorithm 2 Observational/Interventional Sampling

Input: Intervention set Z with values -y (I = () for observational sampling)
1: fori=1,..., K do

2 Z; ~N(0,14) Decy(Z,)

3:  if7 € 7 then

4: X, Yi

5: elSFA_ - @ 72

6: 1X; + Dec; (ZﬁXpai) ¢

7. end 1l @ Decs(Z3, X5)

8: end for A A A
9: Return X := (X1 ..... XK)




DDIM for Counterfactual Sampling

* Forward implicit diffusion process (Encoding)

t_ | C'ft 1
Ut At

K~ E Xt (BT T

Algorithm 3 Counterfactual Inference

Input: Intervention set Z with values +, factual sample =% := (z},. .., r%)
1: fori=1,..., K do {in topological order}
2. ifi € T then m
3: CF — Vi
4: else lf iis not a descendant of any intervened node in Z then
5: CF — :E .
6: else Abduction
7: z;  Enci(a],xp, {abduction step}
. CF . . . . .
:; o ‘o < Dec;(z;, Zpa, Prediction {action and prediction steps}
10: end for
11: Return °F := (&¢F, ..., #F




Abduction

e Diffusion models «/



Causal Inference with Images

Counterfactuals



What is a counterfactual question for images?

 How would a given image look like if we
changed a specific feature.

Original do(t=1.5) do(t=1.5,i=224) do(t=3,i=180)

Deep Structural Causal Models for Tractable Counterfactual Inference



What is a counterfactual question for images?

 How would a given image look like if we
changed a specific feature.

do(Age=8T7) do(Disease=pleural effusion)  Null Intervention Observation

s=male, r=black, a=45
d=no finding

High Fidelity Image Counterfactuals with Probabilistic Causal Models



What is a counterfactual question for images?

By training on a given dataset, possibly containing spurious
correlations.
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What is a counterfactual question for images?

By training on a given dataset, possibly containing spurious
correlations.

Gender
I".

‘I Age

GrayHair

Non-Causal

Y,
. x
Gender is not preserved;

GrayHair does not change; Age and GrayHair is not preserved Gender and Age is not preserved

Counterfactual Image Editing, Pan et al 2024



What is a counterfactual question for images?

By training on a given dataset, possibly containing spurious
correlations.

Change Age Change Gender Change Grayhair

L |/
E ‘ . . ) :
| by 1
1 §

Gender
®
{ Gender is preserved;
GrayHair possibly changes Age and GrayHair is preserved
‘I Age _
©
.5
GrayHair
Q
c
o
P4

Gender is not preserved;

GrayHair does not change; Age and GrayHair is not preserved Gender and Age is not preserved

Counterfactual Image Editing, Pan et al 2024



Three Steps of Counterfactual with Images

*Query:  P(I,|I', ')

 Evidence:
;o Abduction Action Prediction
I T Infer exogenous noise  Replace structural ~ Compute counterfactual
! equations

-1 -1

 Action: dO(ﬂ?)

. Outcome: 1,

Benchmarking Counterfactual Image Generation



Feature control requires disentanglement

* Generative models can reconstruct images with new features.

 But correct control over the features requires disentangling
causal features from the exogenous/background properties.



Abduction

e Diffusion models
e VVariational auto encoders
* Normalizing flow.



Basics of a VAE

Encoder

VAE: maximize X >
q4(z|x)

variational lower bound

Etotal(m) — _Eq¢(z\m) [logpt')(m‘z)] T E(L(qtﬁ(z‘x) || p(z)z
——— ~~

Reconstruction Loss Regularization




Problem Definition

 Variational autoencoder (VAE) can be used to disentangle
iIndependent factors from observations.

 \What if the factors associated with semantics are not
independent rather maintains an underlying causal structure?



Problem Definition

* i) Light position, ii) pendulum angle; causes
shadow iii) position and iv) length. — All associated.

« Causal disentangled representation learning
+ "do-operation”
= generate new images (ex: without any shadow)



CausalVAE: Disentangled Representation Learning via

Neural Structural Causal Models
Yang, M., Liu, F., Chen, Z., Shen, X,, Hao, J., & Wang, J. (2021)

* The encoder takes observation x as inputs to generate
independent exogenous variable €

X, u X'
* With a prior distribution assumed to be SR

standard Multivariate Gaussian sl |

€
/1\
Causal |
- "*l* L 7 /%

u—z . Mask

(D Inference (2) Generate




CausalVAE

* A causal Layer implements a Linear SCM

Gaussian

Exogenous

z=A"z+e=(1-A")"te, e ~ N(0,1),

Learnable Causal

Parameters Representation of n
concepts

(D Inference

(2) Generate



CausalVAE

* A Mask Layer to generate children from their corresponding
parent variables.

zi = gi(A; 0z;m;) + €,

Parameters
of g

Non-linear

functions for stable

performance Parent weight
vector of node i

(D Inference (2) Generate



CausalVAE

 Finally, z is taken as the input of the decoder to reconstruct the
observation x.

|
. Decoder |
| J

(D Inference (2) Generate



CausalVAE

* Do-intervention are performed at the Mask layer to propagate
the effect to child concepts. . — gi(A;02z;m;) + €,

|
i Leak Information € |
s — [
! /’___|__\ r/ SR \\ '/ ’ = \\ |
0 L e [0
| [ | | | | e —————— | | |l :
: | ] | | | ) | I |l I
BollooM: " Moo N
2 | | |
i i i i | 'Maski OO0 'MaskE | Decode ' x
I atlalaleee BROeINE
i @' | @[@: | | | }@{ | i
. | | |
o 1 | :\QQOQ’} <} !
e @) T ()@
: [ | 1| | | [ ) |
! \\\\\\\\\\\ \ D i ) |
! _______________ = _/..//.
| (3 Details of Generative Process

8 o
(@) Intervene f 4
@ Inference ~ @ Generate | _ ... 4



CausalVAE: Results

Intervene GENDER Intervene SMILE
EYES MOUTH
Chapged . Changed
GENDER SMILE
not not

Influenced




Problem Definition

 Tractable inference of exogenous noise variables for the
abduction step.

* Visualization of counterfactuals in more diverse applications.



Basics of Normalizing Flow

« Change of variables theorem + A sequence of invertible
transformation functions.

* A simple distribution = complex distribution

| |
\ 1
\ /
\ /
\ //

Zgy ~ Po(zo) z; ~ p Zi ~ pK ZK

https://lilianweng.github.io/posts/20 18-10-13-flow-models/



Deep structural causal models for tractable

counterfactual inference (DSCM)
Pawlowski, N., Coelho de Castro, D., & Glocker, B. (2020).

 Modular Framework: Unified SCM framework with deep neural
mechanisms.

 Efficient Inference: Tractable counterfactuals via variational
methods or normalizing flows making the complex abduction
step efficient.

* Diverse Applications: Case studies on synthetic data and
brain MRI scans.



DSCM Architectures

Pa;

@t

(a) Invertible explicit likelihood (b) Amortised explicit likelihood (¢) Amortised implicit likelihood

Uses conditional Decomposes Suggests using

Normalizing flow. transformation adversarial objective
complexity and uses with discriminator
convolutional neural encoder.

network.



DSCM: Abduction w/ Normalizing Flows (NF)

* In invertible mechanisms, the exogenous noise can be
deterministically and exactly recovered by inverting the
mechanism:

€; = fg:_l (33% pa%-)



DSCM Intervention

* A fixed intervention removes the dependency with parents and
exogenous noise.

* Replaces the existing mechanism with a surrogate mechanism:

T = ﬁc(ﬁk;ﬁék)



DSCM Prediction J
@)
* We have deterministically inverted Immblle explicit likelihood

noise variables found during the abduction step.

* We have the new parent values propagated due to the
iIntervention step.

* Plug back noise into the into the forward model along with new
parent values.

« Redundant for not descendants of the intervened variable, as
they will be unaffected by the changes



DSCM Prediction J
@)
—
Invertible explicit likelihood

* Plug back noise into the forward model along with new parent
values.

« Redundant for not descendants of the intervened variable, as
they will be unaffected by the changes

Abduction Action Prediction
o]

Infer exogenous noise  Replace structural ~ Compute counterfactual




DSCM Results: MNIST

2504 @ Original | B
—e— do(t) : '
~e- do(i) ! ;

. 1
= 200 !
B l
‘n 1
o 150 4 I Original A o(t=5) o(i =64) o(t=3,i=180)
€ I
- é é

I 1
I 1

- I |

100 : !

I |

I |

1 1
1 2 3

thickness (t) Original B o(t=1.5) o(t=1.5,i=224) o(t=3,i=180)



DSCM Results: Brain MRI

* Image (x), age (a), sex (s), and brain (b) and ventricle (v) volumes.
* Different interventions on the same original brain.

s=female;a=49y;b = 1153m|v 26.62ml

do(a=280Yy) do(b =800ml) =110ml) do(s = male)
Original image
Counterfactuals
Difference maps A\ a J
,/

(a) Computational graph

(b) Original image, counterfactuals, and difference maps



Problem: (Non-)identifiability of Image counterfactuals
« Obtaining unique exogenous noise from observations- challenging!
* Till now, empirical performances under different assumptions.

* |s it even possible to obtain unique counterfactual images in general?



Counterfactual Image Editing
Pan, Y., & Bareinboim, E. (2024).

« Shows fundamental impossibility results for counterfactual
editing.

* Approximates non-identifiable counterfactual distributions with
counterfactual consistent estimators.



ANCM

Theorem (ID). The image counterfactual distribution P(I,T,)
is not identifiable from any combination of (P(V,I),G).

* Any image counterfactual distribution is almost never uniquely

computable from the observational distribution/samples and the
given graph.



ANCM: causal graph

* male F =0; female F =1
young Y =0;o0ldY =1
gray H=1; non-gray H=20

Upr > F
Uy—)Y
U, - H
U, - H




ANCM: non-identifiability

M* M

fH = (-Uy AUg,) ® (Uy ANUg,)

PV, 1)

g:

P*(V,T) = P (V,T)

Two SCMs similar except

:
P (V,I)

Observational
distributions

Unobserved P s (Ia Ixzx')
Nature/Truth R ’
M * :
?
Learned/ E
Proxy 5 ‘
‘% P%*(I9 IX:X’)

Image counterfactual
distributions

¢

counterfactual



ANCM: Architecture

« Care set W: The factors in the image we care to be changed
after an intervention. Rest might/might not change.

* Training:
* Encoder decoder to fit P(l)
* Neural nets to fit P(V|l)

@ # 0,(U | T) #
encoder




ANCM: Inference
OL. JELK

« Inference: P(I L)
» Sample U ~ P(U)
. Sample initial i ~ I ()

. Sample counterfactual 3 ~ I™=' (1)
where M /(1) is sub-model after intervention




ANCM: Limitations in Inference

* The proposed inference of the algorithm generates
counterfactual pairs from the distribution P(I? I:i:")

- Counterfactual Editing by existing work: P (I, |I)



What would the image be had the bar been removed?

Initial Images

Original A o(i=64) o(t=3,i=180)

P(I:i:’: ‘I)

Counterfactual
Images




ANCM: Limitations in Inference
* The authors answer the following question in their paper FAQ:

* Q: "Is the editing goal of this paper to change the intervened
features in the image and keep other features the same?”

* A: "not necessarily...The goal of this work is to provide causally
consistent editing results with the underlying ground truth. P(1, I:i:’)

Many existing works try to edit certain features and prevent this
edit from affecting other features.” /
P(I;,|I)



ANCM: Limitations in Inference

 Stable Diffusion[1], StyleGAN[2] might be strong competitor in
empirical performance, but they do not contain any theoretical
guarantee.

* Thus, “counterfactual image editing while keeping
background information unchanged with theoretically
correctness’- is still an open problem.

[1] Rombach, Robin, et al. "High-resolution image synthesis with latent diffusion models." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022.
[2] Karras, Tero, Samuli Laine, and Timo Aila. "A style-based generator architecture for generative adversarial networks." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019.



Benchmarking Counterfactual Image Generation

Melistas, T., Spyrou, N., Gkouti, N., Sanchez, P., Vlontzos, A., Panagakis, Y., ... & Tsaftaris, S.
(2024)

Evaluation:

 Effectiveness: Intervening on a variable to have a specific value
will cause the variable to take on that value.

« Composition: Intervening on a variable to have a value it would
have had without our intervention will not affect the other
variables in the system.

* Reversibility: Can the method reverse the counterfactual image
to the original image?



Evaluation on Images

factual 1cycle 10cycles factual 1cycle 10cycles factual 1cycle 10cycles factual 1cycle 10 cycles

L
L

GAN HVAE VAE

MorphoMNIST Celeb (simple) CelebA (complex)

Figure : Qualitative evaluation of composition across all datasets/graphs. From left to right across
all datasets: (i) factual, (i1) null-intervention (reconstruction) (ii1) 10 cycles of null-intervention



Evaluation on Images: Effectiveness




Evaluation on Images: Effectiveness

factual do(apoE) do(age) do(sex) do(brain_v)do(vent_v) do(slice) factual do(smile) do(eg)

IR K6 0 A
lﬁﬁa
BRI A A

ADNI CelebA (simple)

(X

GAN HVAE VAE

o



Which architecture does perform best?

Table 3: Effectiveness on CelebA test set for both graphs.

CelebA (simple)
Model Smiling (s) F1 1 Eyeglasses (e) F1 1
do(s) do(e) do(s) do(e)
VAE 0.8970.02 0.9870.01 0.9380.05 0.8100.02
HVAE 0.9980.01 0.9970.01 0.8830.06 0.981¢.02
GAN 0.819¢.02 0.8730.01 0.957¢.03 0.891¢.01
CelebA (complex)
Age(a)F1 1 Gender (g) F1 1

do(a) do(g) do(br) do(bl) do(a) do(g) do(br) do(bl)
VAE 0.350.04 0.7820.02 | 0.8160.02 | 0.8199.02 0.9770.01 | 0.9090.02 | 0.959.02 | 0.9730.01
HVAE | 0.654¢g1 | 0.8930.04 | 0.9080.03 | 0.899003 || 0.988g.02 | 0.949303 | 0.994¢.01 0.950.03
GAN 0.4130.04 0.710.02 0.8180.02 | 0.799¢.01 0.9520.01 | 0.982001 | 0.920.01 0.9619.01

Beard (br) F1 1 Bald (bl) F1 1

do(a) do(g) do(br) do(bl) do(a) do(g) do(br) do(bl)
VAE [ 0.944p0, | 0.828503 | 0296005 | 0.9450 02 | 0.0230.03 | 0.4960.05 | 0.0450.02 | 0.4120 03
HVAE | 0.9520 03 | 0951003 | 0.441911 | 0.916004 || 0.02005 | 0.860.05 | 0.045007 | 0.611¢ 04
GAN 0.908¢.01 0.8380.02 0.233¢.03 0.9079.01 0.021¢ 92 0.82¢.02 0.055¢0.02 | 0.492 02




Thank You!
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